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SYSTEMATIC LITERATURE REVIEW ON ANALYSING THE IMPACT OF PROMPT 

ENGINEERING ON EFFICIENCY, CODE QUALITY, AND SECURITY IN CRUD 

APPLICATION DEVELOPMENT 
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Abstract 

This research investigates the impact of prompt engineering on the efficiency, code quality, and security 

of CRUD (Create, Read, Update, Delete) operations in software development using large language 

models (LLMs) like ChatGPT. Prompt engineering, which involves crafting specific inputs to guide AI 

outputs, has become crucial for code generation, debugging, and vulnerability detection tasks. The study 

addresses three key research questions: identifying the most influential aspects of prompt engineering 

on CRUD efficiency compared to traditional coding, recognising common error patterns in AI-

generated code and preemptive mitigation strategies, and leveraging human-AI collaboration to 

optimise CRUD application development. This study evaluates 52 relevant papers from 2018 to 2023 

through a systematic literature review from Google Scholar, ResearchGate, arXiv, and Sci-Hub. The 

findings indicate that effective, prompt engineering significantly enhances productivity, reduces 

development time, and improves code adaptability to complex data structures. Techniques such as role-

prompting and chain-of-thought prompting are highlighted for their ability to produce high-quality 

code, reducing errors and enhancing overall code quality. The review revealed significant results, 

including identifying prompt engineering techniques that substantially improve the performance of 

LLMs in CRUD operations. ChatGPT, in particular, excels in generating and debugging code but 

struggles with more complex tasks and security vulnerabilities. The study emphasises the need for 

continuous human oversight to ensure security and correctness, addressing challenges such as managing 

programming variability and the stochastic nature of LLMs.The research concludes that integrating 

ChatGPT into CRUD operations significantly advances software development, improving efficiency, 

code quality, and security. However, it is crucial to address its limitations through better prompt 

engineering and continuous human involvement. Future work will involve developing a fully functional 

CRUD application using generative AI, further evaluating its practical applications and limitations in 

software development. 
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Introduction 

Prompt engineering has become crucial in software development with large language models (LLMs) 

like ChatGPT. This technique involves crafting specific inputs to guide LLM outputs, enhancing code 

generation, debugging, and security. Generative AI tools like ChatGPT, GitHub Copilot, Gemini, and 

Code Whisperer excel in tasks like code summarisation, bug triaging, and program repair. CRUD 

operations—Create, Read, Update, and Delete—are fundamental for managing data in software 

applications. Advanced prompt engineering techniques have revolutionised CRUD operations, 

automating repetitive tasks, reducing development time, and improving code quality and adaptability 

to complex data structures using generative AI platforms. By the end of this research, the following 

questions aim to be answered, 

 

RQ 1: What specific aspects of prompt engineering most significantly influence the efficiency 

of CRUD operations when using generative AI models, and how do these influences compare 

with traditional manual coding approaches? 

RQ 2: What are the common patterns of errors or vulnerabilities in AI-generated code for 

CRUD operations, and how can these be preemptively identified and mitigated? 

RQ 3: How can human-AI collaboration be leveraged to enhance the development process of 

CRUD applications, and what are the roles and responsibilities of human developers and AI 

models in this collaborative approach? 

 

By the end of this research, the following objectives are anticipated to be achieved, 

1. To identify critical factors influencing the efficiency of CRUD operations using generative AI. 

2. To analyse existing large language models for code quality and security in CRUD applications. 

3. To compare the performance of AI-generated CRUD applications against traditional coding 

practices based on findings from the literature. 

4. To assess the reported outcomes of human-AI collaboration in CRUD application development 

through systematic analysis of existing studies. 

5.  

The effectiveness of AI-generated code varies, with ChatGPT excelling at simpler tasks but struggling 

with complex challenges and security issues.(Kuhail et al., 2024) Prompt engineering enhances CRUD 

application development's efficiency, code quality, and security. This research aims to analyse prompt 

engineering's impact, identify key factors, and evaluate human-AI collaboration, providing insights to 

optimise AI integration in software development. 

 

Methodology 

The primary objective of this study is to review existing literature on CRUD application development 

using generative AI, focusing on the impact of prompt engineering on efficiency, code quality, and 

security. Following PRISMA guidelines(Page et al., 2021; PRISMA Statement, n.d.) for a systematic 

and transparent review, relevant papers were sourced from Google Scholar, ResearchGate, arXiv, and 

sci-Hub. The initial dataset comprised 7,410 records, refined by applying specific inclusion and 

exclusion criteria. 

 

Initially, 857 records were excluded for not using surveys or questionnaires for data collection. An 

additional 385 records were removed because quantitative or mixed research methodologies were 

lacking. Only the first forty pages of Google Scholar results were analysed to keep the dataset 

manageable. Papers irrelevant to the research, unavailable in full, or not published in English were 

excluded. Only papers from 2018 to 2023 were considered, resulting in 52 papers selected for final 

evaluation. (Fig.1) 
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Fig. 1: PRISMA Flow Diagram 

 

The review included detailed searches using specific keywords related to the research topic, such as 

"ChatGPT in software engineering," "Prompt engineering in programming", "AI in software 

development," "Security in AI-generated code", "Code quality metrics in AI programming" "ChatGPT" 

AND "CRUD" "CRUD" AND "ChatGPT" These searches were conducted across multiple databases. 

 

The selected papers were analysed for the role of prompt engineering in enhancing large language 

models (LLMs) for CRUD operations, code generation accuracy, productivity, and the effectiveness of 

AI tools like ChatGPT in debugging and improving code quality. The study also examined the security 

implications of AI-generated code and how prompt engineering can mitigate vulnerabilities. The 

synthesised data provides insights into the practical applications and limitations of integrating AI tools 

in software development, especially for CRUD applications. 
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Results and Discussion 

Prompt Engineering on Software Development 

Prompt engineering involves crafting specific text prompts that generative AI models can understand 

and act upon effectively. This technique is crucial for enhancing the efficiency of large language models 

(LLMs) by providing clear, specific, and unambiguous instructions. Effective prompts include 

sufficient context, detailed instructions, and examples, often requiring iterative refinement to achieve 

accuracy and alignment with the intended goal(Hemil et al., 2024; Jiang et al., 2022; Sahoo et al., 2024). 

 

Prompt engineering optimises LLM performance in software development, making it a cornerstone of 

current AI applications(Chen et al., n.d.; ‘Exploring the Competency of ChatGPT in Solving 

Competitive Programming Challenges’, 2023). It has evolved into an advanced industry with methods 

ranging from foundational approaches like role-prompting to advanced techniques such as chain-of-

thought and tree-of-thought prompting. These methods reduce machine hallucinations by integrating 
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Source: (Yetiştiren et al., 2023) 

Table 4: Percentage Results of all code generation tools for Original Experiment (ORG), 

Only Function Name (OFN) and Dummy Function Name (DFN) 

external knowledge, improving the accuracy of LLM outputs(Chen et al., n.d.). Generative AI, through 

prompt engineering, has the potential to revolutionise end-user programming by enabling code 

generation from natural language prompts, significantly expanding its scope(Sarkar, 2023). 

 

LLMs such as Copilot, CodeWhisperer, and ChatGPT have demonstrated exceptional performance in 

various software engineering tasks, including code summarisation, bug triaging, and program 

repair(Dipongkor, 2024; Weisz et al., 2023; Yetiştiren et al., 2023), (Table 1). 

 

 

 

 

 

 

 

 

Effective prompt creation, like the CEDAR technique, significantly improves accuracy and efficiency 

in tasks such as test assertion generation and program repair, outperforming existing models(Nashid et 

al., 2023). LLMs enhance code quality by reducing complexity, improving readability, and generating 

correct and less complex programs(Shirafuji et al., 2023). 

 

Despite the benefits, prompt engineering faces challenges such as managing programming variability 

and the stochastic nature of LLMs(Acher et al., 2023; Rush, 2023). Leveraging few-shot examples with 

LLMs like GPT-3.5 promotes better programming practices, though some unnecessary modifications 

may occur(Shirafuji et al., 2023). The interaction between humans and generative AI tools in creative 

industries reveals diverse strategies to overcome these challenges, emphasising the evolving nature of 

these technologies(Feng et al., 2024; Rush, 2023; Sun et al., 2024).   

 

Prompt engineering is essential for optimising LLMs in software development, significantly enhancing 

efficiency, code quality, and security. Techniques like role-prompting, chain-of-thought prompting, and 

tree-of-thought prompting have proven effective in reducing machine hallucinations and improving 

output accuracy. Despite challenges, prompt engineering remains crucial for advancing LLM 

capabilities, driving innovation, and improving productivity in software development (Huang et al., 

2024; Ricárdez et al., 2024; Taeb et al., 2024). 

 

ChatGPT as a Software Development Tool 

ChatGPT is a helpful software development tool known for generating code, debugging, and enhancing 

security. Its advanced language skills allow it to create accurate code, find and fix errors, and spot 

vulnerabilities. It boosts productivity and efficiency but has limitations, such as struggling with complex 

errors and sometimes giving lengthy responses. ChatGPT is best used as a support tool that 

complements human expertise, helping ensure strong and secure software development. 

 

Code Generation Accuracy and Productivity of ChatGPT 

 OpenAI has transformed ChatGPT from its initial versions to the sophisticated GPT-4, significantly 

enhancing its programming capabilities. Built on a transformer-based architecture, ChatGPT excels in 

tasks like code generation and debugging, making it one of the most accurate AI tools in software 

development(Coello et al., 2024) (Georgsen, n.d.). Since its release, developers have widely adopted 

ChatGPT for its efficiency and reliability in software engineering, supporting them across various 
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development lifecycle stages. This introduction explores the evolution, structure, and impactful role of 

ChatGPT in modern software development. 

 

ChatGPT has demonstrated a mixed performance in terms of code generation accuracy, especially when 

tested on diverse coding problems from platforms like LeetCode. While it excels at solving easier and 

more popular coding problems, it struggles significantly with harder and less popular ones(Kuhail et 

al., 2024). For instance, ChatGPT solved 73.3% of easy problems but only 10% of complex problems. 

This disparity highlights the tool's limitations in handling complex coding tasks efficiently(Kuhail et 

al., 2024). Similarly, Codex, another AI tool with 12 billion model parameters trained on 54 million 

GitHub repositories, showed a 70% success rate on Python programming problems, indicating that 

while AI tools are promising, their effectiveness diminishes with problem complexity. (Chen et al., n.d.) 

 

In a study comparing the performance of ChatGPT with Stack Overflow for various programming tasks, 

ChatGPT outperformed Stack Overflow in algorithmic and library tasks but lagged in debugging tasks. 

This suggests that while ChatGPT can generate high-quality code and complete tasks quickly, its utility 

varies depending on the task type (J. Liu et al., 2023). Furthermore, a user study involving 99 

programmers revealed that frequent users of AI tools tend to trust them more. (Ahmad et al., 2023; 

Wermelinger, 2023) 

 

AI tools like ChatGPT and GitHub Copilot have significantly boosted productivity. For example, 

GitHub Copilot's autocomplete functionality has been associated with a 50% increase in 

productivity(Wermelinger, 2023). A study by (Noy & Zhang, 2023)involving 444 participants found 

that ChatGPT-3 reduced coding time by 0.8 standard deviations and improved output quality by 0.4 

standard deviations. However, ChatGPT's performance is not without flaws. It can sometimes provide 

incorrect or overly verbose responses due to its optimisation tendencies and limited inference 

capabilities, making it less reliable in certain contexts (Sarkar, 2023). 

 

ChatGPT, particularly in its advanced GPT-4 iteration, has markedly enhanced code generation 

accuracy and productivity in software development. It is highly effective in generating and debugging 

code, making it a valuable tool for developers across various development lifecycle stages. While it 

excels in solving more straightforward coding tasks and improving efficiency, its performance 

diminishes with more complex problems. Despite its strengths, ChatGPT can sometimes produce 

incorrect or overly verbose outputs. ChatGPT has proven to be a significant asset in software 

engineering, streamlining processes and increasing productivity, though there remains room for 

improvement in handling more complex tasks. 

 

Debugging Capabilities and Limitations of ChatGPT 

ChatGPT, an advanced natural language processing (NLP) model, has gained significant attention for 

its ability to assist developers in various tasks, including code debugging. Its debugging capabilities 

leverage NLP skills to analyse and identify errors in code, regardless of the programming 

language(Haque & Li, 2023). ChatGPT offers several advantages as a debugging tool, such as increased 

efficiency, improved code quality, continuous learning from previous sessions, and the potential for 

offering debugging as a service. However, its limitations include a limited understanding of complex 

errors, dependence on training data, and a tendency to generate overly verbose responses(Haque & Li, 

2023). Fig. 2 and 3 illustrate the comparison between traditional approaches and the debugging process 

of ChatGPT.(Haque & Li, 2023) 
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Fig. 2: Typical Debugging Process 

using Traditional Methods Fig. 3 Debugging Process Using 

ChatGPT 

Source: (Haque and Li, 2023) Source: (Haque and Li, 2023) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Despite these drawbacks, studies have shown ChatGPT to be effective in identifying syntax errors and 

common mistakes, suggesting code optimisations, refactoring, and generating missing code based on 

project context(Biswas, 2023). Nonetheless, ChatGPT's ability to detect vulnerabilities is inconsistent, 

often making erroneous predictions when verifying the correctness of generated code. This highlights 

the need for more effective prompt design to enhance its self-verification capabilities(Yu et al., 2024). 

 

ChatGPT should be used as an augmentative tool rather than a replacement for human expertise in 

debugging. While it can automate certain aspects of debugging, saving time and effort, human review 

and testing remain critical components of the software development process(Haque & Li, 2023). Thus, 

ChatGPT's role in debugging is to complement human efforts, leveraging its strengths to improve 

efficiency while acknowledging its limitations in addressing complex errors and maintaining real-time 

interaction(Biswas, 2023; Haque & Li, 2023; Yu et al., 2024). 

 

Enhancing Security in Software Development of ChatGPT 

The role of ChatGPT in enhancing security within software development is multifaceted. It can assist 

in detecting vulnerabilities by analysing code and comparing it to its training data, but its effectiveness 

often depends on the quality of the prompts provided(Zhang et al., 2024). 

 

A study on using ChatGPT for vulnerability detection found that while ChatGPT can detect 

vulnerabilities, it often provides incorrect predictions when explicitly asked if the completed code is 

free of vulnerabilities. This is due to its limited ability to self-verify and the occurrence of self-

contradictory hallucinations, where it initially generates what it believes to be correct code but later 

predicts it to be incorrect during self-verification(Zhang et al., 2024). The security implications of using 

AI tools like ChatGPT are significant. Developers need to be cautious about trusting AI-generated code 

due to the risk of insecure code propagation. A study comparing ChatGPT and Stack Overflow found 

that while ChatGPT generated fewer vulnerabilities overall, the differences were not statistically 

significant, indicating that both platforms can propagate vulnerable code(Hamer et al., 2024). The study 

also emphasised the importance of applying good software security practices, such as static analysis 

tools and software testing, to detect and mitigate vulnerabilities in AI-generated code (Hamer et al., 

2024). 
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For instance, adding high-quality code summaries to prompts can improve ChatGPT's performance in 

vulnerability detection, although the impact is programming-language-specific (Zhang et al., 2024) 

 

ChatGPT plays a multifaceted role in enhancing security within software development by assisting in 

vulnerability detection through code analysis. However, its effectiveness is highly dependent on prompt 

quality. Studies have shown that while ChatGPT can identify vulnerabilities, it often provides incorrect 

predictions due to limited self-verification abilities and occasional hallucinations. Therefore, developers 

should not blindly trust AI-generated code and must employ reasonable security practices, such as static 

analysis tools and thorough software testing, to ensure code security. Improving prompt quality, like 

adding detailed code summaries, can enhance ChatGPT's vulnerability detection performance, though 

results may vary by programming language. 

 

CRUD operations as Software development's backbone 

CRUD operations, an acronym for Create, Read, Update, and Delete, are essential for managing data in 

software applications. These operations streamline database interactions, maintain data integrity, and 

enhance performance, making them crucial for developing robust and user-friendly 

applications(Bartalos & Bieliková, n.d.). 

 

Different technologies showcase the strengths and limitations of CRUD. NoSQL databases, such as 

MongoDB and CouchDB, are praised for their flexibility and scalability. MongoDB excels in data 

fetching, whereas CouchDB performs well in write operations(Truica et al., 2015). On the other hand, 

relational databases using SQL offer robust data management but face challenges with scalability and 

performance in cloud-based environments(Bonteanu & Tudose, 2024). Comparative studies highlight 

MongoDB's speed in fetching data and CouchDB's efficiency in insert, update, and delete 

operations(Truica et al., 2015). 

 

Frameworks like Spring Boot and tools like CRUDyLeaf automate these operations, enhancing 

development speed and reducing manual effort(Gómez et al., 2020). Despite these advancements, 

integrating features like authentication and search into CRUD-generated applications remains 

challenging(Anuar et al., 2023). Advanced patterns like CQRS and ES offer potential improvements by 

separating read and write operations but require deep domain understanding(Pantelelis & Kalloniatis, 

2022). 

 

HTTP CRUD methods (POST, PUT, DELETE) enhance API expressiveness, simplifying data 

management and supporting advanced querying(Schröder et al., 2018). Generative AI tools, such as 

ChatGPT, automate repetitive CRUD tasks, reducing development time, improving code quality, and 

adapting to complex data structures, thereby boosting productivity and robustness in software 

applications. As software complexity increases, leveraging AI to optimise CRUD operations will be 

crucial for maintaining effective, secure, and scalable applications. 

 

Combining essential CRUD operations with modern Generative AI significantly enhances software 

development efficiency, scalability, and robustness. 

 

Evaluation of AI-Generated Codes 

Evaluating AI-generated code is crucial for understanding its practical applications and limitations. 

While AI boosts productivity and reduces development time, challenges in code correctness, 



The Journal of Desk Research Review and Analysis, Vol. 2, Issue 1, 2024, 235-249 

 

242 

 

maintainability, and security persist. This analysis focuses on the efficiency, quality, and security of AI-

generated code, identifying strengths and areas for improvement. 

 

Efficiency and Quality of AI-Generated Code 

The efficiency and quality of AI-generated code from models like ChatGPT have gained significant 

attention in software development. OpenAI's advancements, particularly with GPT-4, have greatly 

enhanced ChatGPT's programming capabilities, making it a reliable tool for code generation and 

debugging (Sakib et al., 2023). (Y. Liu et al., 2024)However, its performance varies across different 

tasks, declining for new programming challenges introduced after January 2022(Y. Liu et al., 2024). 

The quality of the generated code also decreases with task complexity, as seen in Python (63% clean 

code for passed tasks vs. 56% for failed tasks) and Java (47% clean for passed vs. 39% for failed) (Y. 

Liu et al., 2024). 

 

Technical evaluations reveal mixed results. While ChatGPT 3.5 produced accurate Python code for 

various computational problems, ChatGPT 4.0 encountered more runtime errors and inaccuracies 

(Diehl et al., 2024). It performed well in C++ and Java but struggled with complex and parallel 

computing constructs. Errors were rare in easy tasks (1%) but increased for more complex tasks (10%), 

with common issues including incorrect outputs (27%) and code style challenges (47%)(Y. Liu et al., 

2024). 

 

Despite its promise, ChatGPT faces challenges such as efficiency drops with increasing task 

complexity, overly verbose responses, and incorrect predictions due to limited self-verification (Haque 

& Li, 2023). Human review and testing remain crucial for handling complex errors and ensuring 

security (Yu et al., 2024). Improving prompt engineering, leveraging detailed feedback, and iterative 

repairing can enhance ChatGPT's performance, addressing its code generation and debugging 

limitations. 

 

Security in AI-Generated Code 

The security of AI-generated code is a paramount concern, particularly given the potential for 

introducing vulnerabilities during code generation. ChatGPT has shown some ability to detect and 

address software vulnerabilities, but its performance varies significantly depending on the type of 

vulnerability and the context provided(Khoury et al., 2023; Yin, 2024). For example, while ChatGPT 

can identify issues such as bound checking and input validation, it often overlooks other critical 

vulnerabilities like global variable misuse and format string vulnerabilities(Taeb et al., 2024). 

 

A comparative study evaluating ChatGPT, CodeBert, and CodeX found that CodeX had the highest 

code generation capability, producing accurate, secure, and privacy-preserving code. In contrast, 

ChatGPT excelled in explaining potential vulnerabilities and providing detailed comments, which is 

beneficial for understanding security implications (Taeb et al., 2024). Fig.4 illustrates the overall 

performance of the ChatGPT, CodeBert, and CodeX models. 

They discovered that ChatGPT's efficacy and security handling performance is significantly higher than 

other code generation models. 
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Fig. 4: Overall Performance of LLM Models 

Source: (Taeb et al., 2024) 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, ChatGPT's ability to repair vulnerabilities is limited, regardless of whether context 

information is provided (Jaber et al., 2023; Yin, 2024). 

 

Further analysis revealed that ChatGPT's vulnerability detection could be easily influenced, indicating 

a lack of confidence in its own detection capabilities. Moreover, its capacity to assess vulnerability 

severity based on source code alone is limited but can be improved with additional context (Yin, 2024). 

This highlights the need for integrating more comprehensive context information and advanced prompt 

engineering techniques to enhance the security evaluation capabilities of AI models like ChatGPT. 

 

Despite these limitations, ChatGPT's role in improving security through prompt engineering shows 

potential. For instance, iterative prompt refinement and feedback from static analysis tools can help 

identify and mitigate security vulnerabilities more effectively (Y. Liu et al., 2024). Combined with 

continuous input from practitioners, this approach can improve the robustness of AI-generated code and 

enhance its security posture. (Botacin, 2023) investigates GPT-3's potential use in generating malware, 

revealing its capability to create malicious code through smaller building blocks despite challenges with 

large code chunks. While GPT-3 can aid in malware creation, it also assists in deobfuscating threats, 

highlighting its dual-purpose nature. The findings emphasise the need for complementary solutions to 

address these security concerns and the variable detection rates of generated malware variants. 

 

The security of AI-generated code, particularly from ChatGPT, remains a critical concern. While 

ChatGPT shows promise in identifying and explaining vulnerabilities, its ability to repair them is 

limited and highly context-dependent. Comprehensive context integration and advanced prompt 

engineering techniques are essential to enhance its security capabilities. Iterative prompt refinement, 

feedback from static analysis tools, and continuous practitioner input can significantly improve the 

robustness and security of AI-generated code, addressing the potential risks of vulnerabilities and 

malicious code creation. 

 

Human-AI collaboration in software development 

Human-AI collaboration in software development is rapidly advancing, driven by tools like GitHub 

Copilot and ChatGPT, which enhance productivity and streamline coding tasks. GitHub Copilot acts as 

an "AI pair programmer," translating natural language descriptions into source code across multiple 

programming languages(Ahmad et al., 2023; Coello et al., 2024; Wermelinger, 2023). ChatGPT 

supports various aspects of software development, including programming, testing, and debugging. For 

example, it facilitated the development of an online behavioural task using HTML, CSS, and JavaScript, 

demonstrating its ability to script solutions and reduce developers' time and effort (Chauvet et al., n.d.). 
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Fig. 5: Number of occurrences of identified classes of ChatGPT answers given for the 

problems from QuixBugs 

Source: (Sobania et al., 2023) 

 

The collaboration extends beyond code generation. ChatGPT assists in architecture-centric software 

development, synergising architects' knowledge with its capabilities to create robust systems(Ahmad et 

al., 2023). ChatGPT's automated bug-fixing performance enhances software testing processes(Sobania 

et al., 2023). Fig.5 illustrates the number of occurrences of identified classes of ChatGPT answers given 

for the problems from QuixBugs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, despite these advancements, concerns about AI potentially displacing human workers 

persist(Weidinger et al., 2021). AI tools should augment rather than replace human abilities, 

exemplified by GitHub Copilot handling low-level code details, allowing engineers to focus on higher-

level design (Weidinger et al., 2021). 

 

AI collaboration also enhances research by leveraging AI for data collection and emulating human 

responses, complementing traditional methods(Gerosa et al., 2024). For some coding problems, 

ChatGPT-4 successfully generated a working solution on the first attempt but struggled with more 

complex problems, requiring multiple iterations or failing to pass all test cases (Nascimento et al., 2023). 

ChatGPT outperformed novice programmers in easy and medium-level problems but could not 

outperform experienced programmers, highlighting the need for a collaborative approach (Nascimento 

et al., 2023). 

 

Generative AI tools enhance developers' productivity by reducing the time spent on repetitive and 

mundane tasks. A study involving 444 participants revealed that ChatGPT significantly boosted 

productivity, reducing coding time by 0.8 standard deviations and improving output quality by 0.4 (Noy 

& Zhang, 2023). This productivity boost is attributed to the AI's ability to quickly produce satisfactory 

output, allowing developers to focus on more critical aspects of software development. 

 

ChatGPT supports programming instruction in education by providing personalised and interactive 

practices, debugging assistance, and clear code explanations despite challenges such as inaccurate 

responses and ethical concerns(Husain, 2024). ChatGPT's programming skills need improvement; 

human expertise remains crucial in software engineering.(Koubaa et al., 2023) 
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Source: (Nascimento et al., 2023) 

Fig. 6: Impact of CHATGPT as an automation tool on developers. 

Source: (Vaillant et al., 2024) 

Table 5: Result analysis of coding solutions provided by ChatGPT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generative AI tools aid in code improvement and supplementary tasks, with 32.8% of generated code 

being unused due to quality concerns and only 16.8% integrating directly into master branches(Jin et 

al., 2024). Fig. 6 presents graphical representations of how ChatGPT impacts developers. (Vaillant et 

al., 2024)ChatGPT has been shown to produce correct code for a majority of tasks, with success rates 

varying based on problem difficulty. The integration of AI in software development offers substantial 

productivity gains but raises concerns about job security and the quality of AI-generated code(Husain, 

2024; J. Liu et al., n.d.; Vaillant et al., 2024; Weidinger et al., 2021) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, human-AI collaboration in software development highlights a symbiotic relationship where AI 

tools enhance human capabilities, improving efficiency and innovation. Future research should optimise 

this collaboration to maximise benefits while addressing associated challenges. 
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Conclusion 

The integration of ChatGPT and other large language models (LLMs) into CRUD (Create, Read, 

Update, Delete) operations has significantly impacted software development by enhancing efficiency, 

code quality, and security. ChatGPT, through prompt engineering, involves creating detailed and 

specific instructions that guide the AI in performing tasks accurately. This process is essential for 

optimising the performance of LLMs, making them valuable tools in modern software engineering. 

 

ChatGPT improves efficiency by automating repetitive coding tasks, thereby reducing development 

time and allowing developers to focus on more complex and creative aspects of their work. The AI's 

ability to generate functionally correct and clean code from natural language prompts showcases its 

potential to streamline development processes. Techniques like role-prompting and chain-of-thought 

prompting are employed to guide the AI in producing high-quality code that is both readable and 

maintainable. These techniques help in reducing errors and enhancing overall code quality. 

Regarding security, ChatGPT can detect and address some vulnerabilities in the generated code. The 

AI can suggest fixes and improvements by analysing the code based on its training data, thus 

contributing to developing more secure software. However, the effectiveness of ChatGPT in identifying 

and fixing security issues depends heavily on the quality of the prompts and the context provided. 

Continuous human oversight is required to ensure that the code is secure and free from vulnerabilities. 

 

Despite these advantages, ChatGPT has limitations. Its performance declines with more complex coding 

tasks, often producing overly verbose or incorrect code. The accuracy and usefulness of ChatGPT's 

outputs are heavily dependent on the quality of the prompts, and poorly crafted prompts can lead to 

suboptimal or incorrect code generation. Additionally, while ChatGPT can detect some security 

vulnerabilities, its ability to secure the code entirely is limited and necessitates human intervention. 

 

In conclusion, the integration of ChatGPT into CRUD operations presents a significant advancement in 

software development, improving efficiency, code quality, and security. However, it is crucial to 

address its limitations through better prompt engineering and continuous human involvement. As 

technology evolves, refining these AI tools and effectively integrating them into development processes 

will be key to maximising their benefits and mitigating potential risks. 

 

Future Works 

Future work should focus on developing a fully functional CRUD application using generative AI 

prompts with a selected programming language and a large language model (LLM). This project should 

evaluate the application's performance, code quality, and security, providing insights into the practical 

applications and limitations of integrating generative AI in software development. 
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